Galvanic Corrosion Considerations for PV Arrays

Galvanic corrosion is the result of an electrochemical reaction. For galvanic corrosion to take place, four things must exist simultaneously: an anode, a cathode, an electrolyte and a conductive path between two pieces of metal. A galvanic circuit is created in which the anode loses electrons to the cathode with the assistance of the electrolyte. The galvanic cell created by two dissimilar metals and the presence of the electrolyte operates only in one direction. Consequently, the anode eventually disintegrates.

In PV installations, the anode and cathode consist of metals, such as stainless steel, copper and aluminum. Water commonly serves as the electrolyte. Whether galvanic corrosion is a serious problem depends on the potential failure point. For a PV installation, the long-term effects of corrosion can range from unsightly finishes to racking or fastener failure.

The more dissimilar the metals, as reflected by their relative position in the galvanic series, the greater the corrosion potential in the galvanic circuit. The general rule is to avoid joining metals far apart in the galvanic series. For example, steel is anodic next to brass, and stainless steel is cathodic next to zinc or aluminum. Another way to read this is that steel corrodes next to brass and stainless steel, while aluminum and zinc corrode next to steel when an electrolyte and a conductive path are present.

Every metal has a standard electrical potential (voltage) based on its ability to release or accept electrons when in contact with a dissimilar metal and an electrolyte. In reality, the galvanic system is more dynamic than most published material on voltage-potential data suggests. The actual reaction that takes place between two metals in the environment is dependent on electrolyte concentration, pH, temperature and other factors. Rob Haddock from Metal Roof Innovations, manufacturer of the S-5! mounting clamp, provides a word of caution about using the galvanic scale. «Some installers might want to use the galvanic scale to identify dissimilar metals, but the graphical galvanic scale is not always a good way to determine whether one metal is compatible with another,» he says. «When metals oxidize, the oxide layer created is a new material that may or may not exhibit the electrochemical characteristics of the parent material.»

More detailed information is currently available in Ukrainian language.

Корозія рамок сонячних модулів
Корозія рамок сонячних модулів
 

Read more:

Energy forecast by the middle of the century

How will global energy transit happen? Which steps are ahead? Which conclusions should investors make for medium- and long-term prospects?
Discover more

Solar energy in bakery production

A brief overview of modern experience and best practices in the application of solar energy technologies in bakery production in the context of the overall energy efficiency of the bakery industry.
Discover more

Energy storage systems (ESS). Overview

The efficiency of the use of global energy resources depends not only on the ways of their use, but also on the methods of the generated energy storage.
Discover more

O&M Services for Solar Power Plants

High-quality operation and maintenance (O&M) are one of the main ways to ensure the most highly efficient operation of a solar power plant. AVENSTON prepared an overview of the major malfunctions and their impact on solar power plant performance.
Discover more