Геотермальная энергия: пройденный этап или шаг в будущее

Геотермальная энергия стала новой надеждой на замедление климатических изменений каких-то 10 лет назад. Возможности, предлагаемые этим источником энергии, на тот момент казались идеальными: он был неисчерпаемым, не зависел от погодных условий и работал круглосуточно. Геотермальная энергия была обозначена как скрытый чемпион среди источников энергии будущего. Тем не менее, первые неудачи произвели отрезвляющий эффект, и риски, связанные с проведением разведки, в частности, сделали инвесторов нерешительными. Здесь подразумевается риск проведения дорогостоящего бурения на месте, но не нахождение достаточного количества термальной воды или требуемых температур недр для экономической реализации проекта. И возникает вопрос: геотермальная энергия и ГеоТЭС – это прошлый век или перспективное будущее? Каков потенциал геотермальной энергии на нашей планете? Давайте разберемся поэтапно, начиная с того, как было, есть и будет.

Краткий исторический экскурс

Многим современникам будет интересен тот факт, что старейший СПА-центр в виде каменного бассейна, который берет свои воды из горячих источников, расположен в Китае и предположительно построен в III веке до нашей эры. Но настоящими первопроходцами были древние римляне. Например, в Помпеях начали использовать геотермальную энергию для обогрева зданий и подогрева воды еще задолго до того, как это сделали китайцы, в VII-VI ст. до н.э.

Первый известный в Европе «оздоровительный курорт» с горячими источниками был основан в 1326 году в Бельгии, а первое промышленное использование геотермальной энергии началось в конце XVIII века в Италии. Пар, поступающий из естественных вентиляционных отверстий (и из пробуренных отверстий), использовался для извлечения борной кислоты из горячих бассейнов, которые сейчас известны как месторождения Лардерелло. В 1904 году итальянский ученый Пьеро Джинори Конти изобрел первую геотермальную электростанцию, в которой для производства энергии использовался пар (фото 1).

Фото 1. Пьеро Джинори Конти, первая ГеоТЭС в Лардерелло, Италия. Источник: архив Итальянского геотермального объединения.
Фото 1. Пьеро Джинори Конти, первая ГеоТЭС в Лардерелло, Италия. Источник: архив Итальянского геотермального объединения.

С помощью вышеуказанного эксперимента в Америке в 1922 году запустили первую ГеоТЭС мощностью 250 киловатт. В 1960-х годах была введена в эксплуатацию первая крупная геотермальная электростанция в Сан-Франциско, вырабатывающая 11 мегаватт электроэнергии. Сегодня же в США работает более 60 геотермальных электростанций на 18 участках по всей стране.

В 1973 году, когда начался нефтяной кризис, многие страны начали искать возобновляемые источники энергии, именно потому к 1980-м годам стали набирать популярность геотермальные тепловые насосы (GHP), которые дали возможность снизить затраты на отопление и охлаждение.

Шло время, происходили явные климатические изменения – и правительства разных стран объединили свои усилия для решения глобальных проблем. Одним из шагов было подписание в Японии в 1997 году Киотского протокола, которым установили целевые показатели выбросов для развитых стран и предусмотрели инвестирование и передачу технологий развивающимся странам. Этот протокол ратифицировали 184 страны.

Наиболее распространенное использование геотермальной энергии в мире

Геотермальную энергию используют для разных сфер и назначений, ниже рассмотрим некоторые из них (рис. 1).

Рис. 1. Применение геотермальной энергии по всему миру в 2015 году без геотермальных тепловых насосов, в % от общего количества установленной мощности (МВт). Источник: John W. Lund, Ruggero Bertani, and Tonya L. Boyd. Worldwide Geothermal Energy Utilization, 2015.
Рис. 1. Применение геотермальной энергии по всему миру в 2015 году без геотермальных тепловых насосов, в % от общего количества установленной мощности (МВт). Источник: John W. Lund, Ruggero Bertani, and Tonya L. Boyd. Worldwide Geothermal Energy Utilization, 2015.

Геотермальные тепловые насосы. Геотермальные (наземные) тепловые насосы имеют наибольшее потребление энергии (55,30%) и установленную мощность (70,95%) в мире. По данным исследований, в 2000 году такие насосы использовали 26 стран, а в 2015-м – уже 48. Лидеры по установленным единицам – США, Китай, Швеция, Германия и Франция.

Отопление помещений. 89% годового потребления энергии приходится на центральное отопление (28 стран). Среди лидеров – Китай, Исландия, Турция, Франция и Германия, тогда как Турция, США, Италия, Словакия и Россия являются основными пользователями в индивидуальном секторе отопления (рис. 2).

Рис. 2. Значительный вклад геотермальной энергии прямого использования в экономику страны. Источник: John W. Lund, Ruggero Bertani, and Tonya L. Boyd. Worldwide Geothermal Energy Utilization, 2015.
Рис. 2. Значительный вклад геотермальной энергии прямого использования в экономику страны. Источник: John W. Lund, Ruggero Bertani, and Tonya L. Boyd. Worldwide Geothermal Energy Utilization, 2015.

Обогрев теплиц и грунта. Активные страны-пользователи: Турция, Россия, Венгрия, Китай и Нидерланды.

Сушка сельскохозяйственных культур.  15 стран используют геотермальную энергию для сушки различных зерновых, овощных и фруктовых культур. Например: Исландия – для сушки водорослей; США – лука; Сербия – пшеницы и других зерновых; Сальвадор, Гватемала и Мексика – фруктов; Новая Зеландия – люцерны, Мексика, Новая Зеландия и Румыния – древесины.

Тепло, используемое для промышленных целей. Зачастую идет круглосуточное потребление энергии. Например: розлив воды и газированных напитков (Болгария, Сербия и США), пастеризация молока (Румыния и Новая Зеландия), кожевенная промышленность (Сербия и Словения), целлюлозно-бумажная обработка (Новая Зеландия), добыча йода и соли (Вьетнам) и т.д.

Таяние снега и льда. Большинство таких проектов в Исландии, Аргентине, Японии и США, а в ограниченной степени – в Польше и Словении. По оценкам, во всем мире отапливается 2,5 миллиона квадратных метров дорожного покрытия, большинство из которых находится в Исландии (74%). В некоторых районах Исландии используется горячая вода от геотермальных электростанций под дорогами и тротуарами, чтобы помочь растопить лед. В Аргентине используется геотермальный пар для таяния снега на шоссе в Андах.

Туризм. Почти в каждой стране есть СПА-центры и курорты, которые имеют бассейны с подогревом геотермальной водой. Более 70 стран используют геотермальную энергию с этой целью, в наибольшей мере – Китай, Япония, Турция, Бразилия и Мексика.

Другое использование. Тринадцать стран используют данную энергию для животноводства, выращивания спирулины, опреснения и стерилизации бутылок. В Новой Зеландии – для орошения и защиты от замерзания геотермального туристического парка.

Сегодняшнее состояние отрасли

Геотермальные технологии рассматриваются многими учеными как потенциальный лидер в переходе к обществу без углерода. Не случайно в 2017 году на КС-21 в Париже был создан Глобальный геотермальный альянс, коалиция из 38 стран, объединившихся с целью усиления роли геотермальной энергии на международной арене.

Буквально за последние три года частично изменилась первая пятерка стран-лидеров по геотермальной установленной мощности (рис. 3, 4).

Рис. 3. Сегодняшнее состояние отрасли Геотермальные технологии рассматриваются многими учеными как потенциальный лидер в переходе к обществу без углерода. Не случайно в 2017 году на КС-21 в Париже был создан Глобальный геотермальный альянс, коалиция из 38 стран, объединившихся с целью усиления роли геотермальной энергии на международной арене.  Буквально за последние три года частично изменилась первая пятерка стран-лидеров по геотермальной установленной мощности (рис. 3, 4).
Рис. 3. Сегодняшнее состояние отрасли Геотермальные технологии рассматриваются многими учеными как потенциальный лидер в переходе к обществу без углерода. Не случайно в 2017 году на КС-21 в Париже был создан Глобальный геотермальный альянс, коалиция из 38 стран, объединившихся с целью усиления роли геотермальной энергии на международной арене. Буквально за последние три года частично изменилась первая пятерка стран-лидеров по геотермальной установленной мощности (рис. 3, 4).

На сегодня позицию лидера по производству геотермальной электроэнергии удерживают Соединенные Штаты. Индонезия обогнала Филиппины и заняла второе место. Хотя правительство Филиппин прогнозирует удвоение потенциала возобновляемых источников энергии к 2030 году, большая часть которого будет поступать именно от геотермальной энергии, что способствует строительству новых ГеоТЭС в стране.

Осенью 2018 года в Турции и Новой Зеландии запустили новые геотермальные электростанции – это послужило толчком для попадания данных стран в пятерку лидеров (рис.4).

В настоящее время общая мировая мощность составляет 14,37 ГВт. Хотя США по-прежнему являются крупнейшей геотермальной страной, но ограниченная деятельность в области развития приводит к тому, что такие страны, как Индонезия и Турция, становятся более привлекательными для инвесторов.

Рис. 4. ТОП-10 геотермальных лидеров. Источник: Global geothermal capacity reaches 14,37 GW – Top 10 Geothermal Countries, Oct 2018, online edition ThinkGeoenergy.
Рис. 4. ТОП-10 геотермальных лидеров. Источник: Global geothermal capacity reaches 14,37 GW – Top 10 Geothermal Countries, Oct 2018, online edition ThinkGeoenergy.

ТОП-5 геотермальных электростанций мира

  1. Комплекс Geysers мощностью 1,52 ГВт, Калифорния, США. Крупнейшее геотермальное поле в мире, в его состав входит 22 геотермальные электростанции. Geysers обеспечивает потребности в электроэнергии нескольких округов Калифорнии.
Фото 2. Комплекс Geysers, США. Источник: онлайн-издание – Energy Boom – Geothermal Energy.
Фото 2. Комплекс Geysers, США. Источник: онлайн-издание – Energy Boom – Geothermal Energy.

2. Комплекс Lardarello, мощность 770 МВт, Италия. Состоит из 34 станций. Фактически 10% мировой геотермальной энергии производится этим единственным комплексом, который к тому же один из старейших в мире.

Фото 3. Комплекс Lardarello, Италия. Источник: веб-сайт https://www.pdx.edu/geography/sites/www.pdx.edu.geography/files/Larderello.pdf
Фото 3. Комплекс Lardarello, Италия. Источник: веб-сайт https://www.pdx.edu/geography/sites/www.pdx.edu.geography/files/Larderello.pdf

3. ГеоТЭС Cerro Prieto, мощность 720 МВт, Мексика. Это большой комплекс, состоящий из нескольких геотермальных электростанций, расположенных в мексиканском регионе Нижняя Калифорния.

Фото 4. Cerro Prieto, Мексика. Источник: онлайн-издание – The Discourse, Growing pains: The black footprint of Cerro Prieto, Apr’16.
Фото 4. Cerro Prieto, Мексика. Источник: онлайн-издание – The Discourse, Growing pains: The black footprint of Cerro Prieto, Apr’16.

4. Комплекс Makiling-Banahaw, мощность 460 МВт, Филиппины. Был создан Chevron Geothermal Philippine Holdings, Inc. Коммерческое производство на этом заводе запустили в 1979 году, когда начали работать два блока мощностью 55 МВт. Позже, в 1984 году, на трех электростанциях было установлено еще шесть блоков мощностью 55 МВт. Дальнейшее расширение комплекса произошло, когда в 1994 году было установлено 6 бинарных установок нижнего цикла мощностью 15,73 МВт. В последующие годы были открыты другие энергоблоки, при этом нынешняя мощность комплекса – 460 МВт.

Фото 5. Комплекс Makiling-Banahaw, Філіппіни. Джерело: онлайн-видання ParcolNews – Financing geothermal development in the Philippines, Dec'17.
Фото 5. Комплекс Makiling-Banahaw, Філіппіни. Джерело: онлайн-видання ParcolNews – Financing geothermal development in the Philippines, Dec'17.
  1. CalEnergy-Salton Sea, мощность 340 МВт, Калифорния, США. Объект охватывает большую территорию, которая включает в себя 10 станций. Первый блок этого комплекса начал работать в 1982 году, а самый последний введен в эксплуатацию в 2000 году.
Фото 6. CalEnergy, Калифорния. Источник: онлайн-издание ThinkGeoEnergy – CalEnergy to invest up to $1billion in improvements to geothermal plants, Aug’15.
Фото 6. CalEnergy, Калифорния. Источник: онлайн-издание ThinkGeoEnergy – CalEnergy to invest up to $1billion in improvements to geothermal plants, Aug’15.

Перспектива развития отрасли

Согласно исследованию правительства США, мировая база геотермальных ресурсов больше, чем газ, нефть, уголь и уран вместе взятые. Ученые прогнозируют, что к 2050 году геотермальная энергия США будет обеспечивать 10% энергии страны. В то же время иные исследователи придерживаются мнения, что геотермальная энергия – ограниченный ресурс, хотя геотермальная активность обычно может варьироваться от 5000 до 1 000 000 лет, что квалифицирует ее как возобновляемый ресурс.

Согласно прогнозам МЭА, глобальная геотермальная промышленность к 2023 году будет около 18 ГВт (рис. 5).

Рис. 5. Прогнозируемый рост геотермальной энергии в 2018-2023 годах. Источник: IEA predicts geothermal growth of 3,600 to 4,500 MW 2018-2023, онлайн-издание ThinkGeoEnergy.
Рис. 5. Прогнозируемый рост геотермальной энергии в 2018-2023 годах. Источник: IEA predicts geothermal growth of 3,600 to 4,500 MW 2018-2023, онлайн-издание ThinkGeoEnergy.

Например, Великобритания даже рассматривает возможность строительства самого длинного в мире разъема питания между Великобританией и Исландией, который обеспечил бы поставку большего количества возобновляемой энергии в 1,6 миллиона британских домов, в которых нет геотермальных тепловых насосов. Кроме того, планируется построить первую коммерческую геотермальную электростанцию в Корнуолле (Великобритания), если будут получены все необходимые средства. Это не должно вызывать удивления, поскольку некоторые страны получают прибыль от присутствия геотермальной энергии в больших масштабах. Наиболее известный пример – Исландия, чье электричество устойчиво на 100% и использует энергию ветра, гидро- и, в основном, геотермальную энергию.

А в начале января 2019 года правительство Канады объявило, что предоставит существенное финансирование для первой в стране геотермальной электростанции. Перечень стран, которые планируют в дальнейшем инвестировать в геотермальную энергию и строительство ГеоТЭС, достаточно большой. Наблюдается позитивный инвестиционный климат в данный возобновляемый источник. Цифры говорят сами за себя – у геотермальной энергии перспективное будущее.